1,900 research outputs found

    Modellierung der kognitiven Säuglingsentwicklung mittels neuronaler Netze

    Get PDF
    This thesis investigates the development of early cognition in infancy using neural network models. Fundamental events in visual perception such as caused motion, occlusion, object permanence, tracking of moving objects behind occluders, object unity perception and sequence learning are modeled in a unifying computational framework while staying close to experimental data in developmental psychology of infancy. In the first project, the development of causality and occlusion perception in infancy is modeled using a simple, three-layered, recurrent network trained with error backpropagation to predict future inputs (Elman network). The model unifies two infant studies on causality and occlusion perception. Subsequently, in the second project, the established framework is extended to a larger prediction network that models the development of object unity, object permanence and occlusion perception in infancy. It is shown that these different phenomena can be unified into a single theoretical framework thereby explaining experimental data from 14 infant studies. The framework shows that these developmental phenomena can be explained by accurately representing and predicting statistical regularities in the visual environment. The models assume (1) different neuronal populations processing different motion directions of visual stimuli in the visual cortex of the newborn infant which are supported by neuroscientific evidence and (2) available learning algorithms that are guided by the goal of predicting future events. Specifically, the models demonstrate that no innate force notions, motion analysis modules, common motion detectors, specific perceptual rules or abilities to "reason" about entities which have been widely postulated in the developmental literature are necessary for the explanation of the discussed phenomena. Since the prediction of future events turned out to be fruitful for theoretical explanation of various developmental phenomena and a guideline for learning in infancy, the third model addresses the development of visual expectations themselves. A self-organising, fully recurrent neural network model that forms internal representations of input sequences and maps them onto eye movements is proposed. The reinforcement learning architecture (RLA) of the model learns to perform anticipatory eye movements as observed in a range of infant studies. The model suggests that the goal of maximizing the looking time at interesting stimuli guides infants' looking behavior thereby explaining the occurrence and development of anticipatory eye movements and reaction times. In contrast to classical neural network modelling approaches in the developmental literature, the model uses local learning rules and contains several biologically plausible elements like excitatory and inhibitory spiking neurons, spike-timing dependent plasticity (STDP), intrinsic plasticity (IP) and synaptic scaling. It is also novel from the technical point of view as it uses a dynamic recurrent reservoir shaped by various plasticity mechanisms and combines it with reinforcement learning. The model accounts for twelve experimental studies and predicts among others anticipatory behavior for arbitrary sequences and facilitated reacquisition of already learned sequences. All models emphasize the development of the perception of the discussed phenomena thereby addressing the questions of how and why this developmental change takes place - questions that are difficult to be assessed experimentally. Despite the diversity of the discussed phenomena all three projects rely on the same principle: the prediction of future events. This principle suggests that cognitive development in infancy may largely be guided by building internal models and representations of the visual environment and using those models to predict its future development.Die vorliegende Dissertation untersucht die Entwicklung früher kognitiver Fähigkeiten im Säuglingsalter mit neuronalen Netzen. Grundlegende Ereignisse in der visuellen Wahrnehmung wie durch Stöße verursachte Bewegung, Verdeckung, Objektpermanenz, Verfolgen bewegter Objekte hinter Verdeckungen, Wahrnehmung von Objekteinheit und das Erlernen von Reizfolgen werden in einem vereinheitlichenden, theoretischen Rahmen modelliert, während die Nähe zu experimentellen Ergebnissen der Entwicklungspsychologie im Säuglingsalter gewahrt wird

    Arm and the Needle

    Get PDF

    Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis

    Get PDF
    Mitochondrial heat-shock protein hsp60 functions in the folding of proteins imported into mitochondria. Folding occurs at the surface of hsp60 in an ATP-mediated reaction, followed by release of the bound polypeptides. We propose that hsp60 catalyses protein folding

    Sorting pathways of mitochondrial inner membrane proteins

    Get PDF
    Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa Fo-ATPase has been studied as an example. Fo subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokäryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway

    The processing peptidase of yeast mitochondria

    Get PDF
    Two proteins co-operate in the proteolytic cleavage of mitochondrial precursor proteins: the mitochondrial processing peptidase (MPP) and the processing enhancing protein (PEP). In order to understand the structure and function of this novel peptidase, we have isolated mutants of Saccharomyces cerevisiae which were temperature sensitive in the processing of mitochondrial precursor proteins. Here we report on the mif2 mutation which is deficient in MPP. Mitochondria from the mif2 mutant were able to import precursor proteins, but not to cleave the presequences. The MPP gene was isolated. MPP is a hydrophilic protein consisting of 482 amino acids. Notably, MPP exhibits remarkable sequence similarity to PEP. We speculate that PEP and MPP have a common origin and have evolved into two components with different but mutually complementing functions in processing of precursor proteins

    Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space

    Get PDF
    Cytochrome b2 reaches the intermembrane space of mitochondria by transport into the matrix followed by export across the inner membrane. While in the matrix, the protein interacts with hsp60, which arrests its folding prior to export. The bacterial-type export sequence in pre-cytochrome b2 functions by inhibiting the ATP-dependent release of the protein from hsp60. Release for export apparently requires, in addition to ATP, the interaction of the signal sequence with a component of the export machinery in the inner membrane. Export can occur before import is complete provided that a critical length of the polypeptide chain has been translocated into the matrix. Thus, hsp60 combines two activities: catalysis of folding of proteins destined for the matrix, and maintaining proteins in an unfolded state to facilitate their channeling between the machineries for import and export across the inner membrane. Antifolding signals such as the hydrophobic export sequence in cytochrome b2 may act as switches between these two activities

    Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria

    Get PDF
    A nuclear encoded mitochondrial heat-shock protein hsp60 is required for the assembly into oligomeric complexes of proteins imported into the mitochondrial matrix. hsp60 is a member of the 'chaperonin' class of protein factors, which include the Escherichia coli groEL protein and the Rubisco subunit-binding protein of chloroplast

    Test Targets 2.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Test Targets 2.0 was a class project in Test Targets for Graphic Art Imaging in the winter quarter of 2001-2 academic year. The objectives were to put together a collection of custom test forms, developed by Professors Robert Chung and Franz Sigg, and to coach students to showcase possible use of these test forms along with associated Microsoft Excel templates for device calibration and process control when implemented in a color managed digital workflow. - p. iv
    corecore